W116: Combining the Power of Whole-Plant Simulators and CFD for the Dynamic Modeling of WWTPs

Presentation: Available Clarifier Models - Setting up a CFD model - Calibration Procedures - Data needed
Alonso Griborio, Hazen and Sawyer
Randal Samstag, Carollo Engineers

Outline

- Background
 - 1-D models
 - 2-D models
 - 3-D models
- Effective use of all levels of models
- Model calibration and validation
 - Data needed
 - Calibration procedures
 - Output validation test
- Case study, 1-D vs. 2-D vs. 3-D

Conservation Equations

1. Continuity (Conservation of Liquid)
 - All levels
2. Conservation of Momentum (F = ma)
 - 2D and 3D
3. Conservation of Mass for all solids and dissolved substances
 - 1D, 2D and 3D
4. Conservation of Energy (including Heat)
 - 2D and 3D

Modeling of Clarifiers - Background
Background in Clarifier Modeling

Secondary settling tank functions

- Clarification
- Thickening
- Storage
- Flocculation

Processes on Secondary Settling Tanks

- Hydrodynamics
- Settling
- Turbulence
- Sludge Rheology
- Flocculation
- Heat Exchange and Temperature

Secondary Settling Tank Models

- Surface overflow rate (early approaches)
- Box Model: 1-D Idealized Solids Flux
- 1-D Models: Drift Flux Model
- 2-D and 3-D Hydrodynamic Models

Early Approaches

- Hazen (1904)
 – Discrete settling in a plug flow in the horizontal plane
- Camp-Dobbins model (1944, 1946)
 – Modification of Hazen model to include vertical mixing
- State Point Analysis
 – Box type model that assumes the limiting flux can be estimated based on a Vesilind type setting equation.
Hazen

Removal = $R/H = V_sL/(UH) = V_s/SOR$

State Point Analysis

$$SOR 	imes (MLSS)^*(1+\alpha)$$

1-D models

- Vertical flow in layers
 - Vitasovic et al (Vesilind Equation)
 - Kinnear (2 phase flow)

2-D Models

- Larsen developed the first CFD type of secondary clarifier model (1977)
- LaRock; McCorquodale et al; Rodi et al presented 2D primary and secondary clarifier models from 1980-2000
- Griborio and McCorquodale (2004) developed a general public domain SST model (2Dc) that couples solids and hydrodynamics, five types of settling, flocculation, non-Newtonian flow, and compression rate.
City of Windsor – physical-chemical CSO treatment.

2-D

3-D Models

- Use of commercial CFD package such as FLOW3D and FLUENT
 - Richardson (2000) used FLOW3D with uncoupled solids and hydrodynamics
 - CCNY have developed a comprehensive 3D model (FLUENT) that couples solids and hydrodynamics, five types of settling, flocculation, non-Newtonian flow, and compression rate. Their model has been developed with an extensive field testing program.

Remarks

- All of the four levels of modelling are still in use;
- When used within their limitations these model are still providing useful information for the designers and/or operators of clarifiers.
Roles of Models

<table>
<thead>
<tr>
<th>Level</th>
<th>Strength</th>
<th>Application</th>
<th>Weakness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazen</td>
<td>Simple</td>
<td>Discrete settling (Grit)</td>
<td>Ignores hydrodynamics</td>
</tr>
<tr>
<td>Limit State</td>
<td>Simple</td>
<td>Zone settling (SST preliminary design and operational)</td>
<td>Ignores hydrodynamics</td>
</tr>
<tr>
<td>1D</td>
<td>Computation speed</td>
<td>All types of settling including 2 phase flows</td>
<td>Ignores hydrodynamics</td>
</tr>
<tr>
<td>2D</td>
<td>Computation speed compared to 3D; runs on laptop.</td>
<td>All clarifiers where there is a dominant flow direction; dynamic simulations.</td>
<td>Ignores lateral non-uniformity in solids and momentum.</td>
</tr>
<tr>
<td>3D</td>
<td>Completeness of governing equations; high spatial resolution.</td>
<td>All clarifiers. Steady state simulations where a dominant flow direction cannot be assumed.</td>
<td>Long execution times; high level of expertise required.</td>
</tr>
</tbody>
</table>

The 2Dc Clarifier Model - Overview

- A quasi three-dimensional clarifier model
- Developed at the University of New Orleans (UNO)
- Based upon more than 30 years of experience on CFD modeling of clarifiers and published research
- State-of-the-Art tool that has been successfully applied to projects in:
 - Canada
 - USA
 - Japan
 - Korea
 - Australia

Previous 2D hydrodynamic models limitations

- Settling Velocities
- Flocculation
- Compression Rate
- Temperature Simulation and Heat Exchange

Model Calibration
Calibration or Validation? Definitions

- **Calibration**: Initial trials to adjust model parameters to reproduce field conditions (either long term data or field testing data).
- **Validation**: Tests to confirm that a model is representing field conditions. For example by independent stress tests with different flow or settling conditions or operating data.

Input and Output Parameters for Model Calibration and Validation

Input parameters:
- Settling velocity test parameters
- Flow measurements
- MLSS tests
- Flocculation parameters
- Fractionation
- Simulation parameters
- Others like temperature, dry floc density, atmospheric parameters, etc.

Output parameters:
- ESS
- Solids profile
- Velocity profile
- Dye behavior
- RAS SS
- Blanket depth
- Solids fraction distribution

Different Levels of Calibration

- **Four Levels of Calibration**:
 - Level 1
 - Level 2
 - Level 3
 - Level 4

 - Level 1 to Level 4 → decreasing uncertainty

Different Levels of Calibration

Level 1
- Calibrate the model to historical plant data
- Minimum data needed: flows (influent and RAS), MLSS, effluent TSS and SVIs
- Settling coefficients defined based on the SVI
- Calibration normally consists in adjusting basic settling parameters to match historical effluent TSS
Different Levels of Calibration

Level 2
- Similar to CRTC protocol (Dye testing is optional)
- Full-scale testing
- Basic settling parameters, e.g., Vo, K, SVI, are measured
- Data collected include: flows (influent and RAS), MLSS, effluent TSS, RAS TSS, sludge blanket depth, FSS and DSS
- Calibration normally consists in adjusting Takacs equation K2 or the wastewater fractionation and discrete settling velocities

Level 3
- Full-scale testing: average flow and stress testing
- Zone settling and compression rate parameters are measured
- Flocculation kinetics is determined
- Particle size distribution and discrete settling are estimated
- All data collected on Level 2 plus solids profiling. Time series of all parameters are gathered
- Calibration normally consists in adjusting particle size distribution and/or turbulence model parameters

Level 4
- All parameters measured during Level 3 Calibration
- Accurate measurement of particle size distribution (e.g., image analysis, laser reflection, laser diffraction, acoustic spectroscopy, etc.)
- Dye test
- Measurement of Velocity (e.g., drogue test, acoustic doppler)
- Measurement of the floc's dry specific gravity
- Calibration normally consists on adjusting discrete settling velocities or turbulence model parameters

Input Parameter Tests
- Settling velocity testing
- Flow measurement
- MLSS measurement
- Density measurement: lock exchange
- Dispersed solids / flocculation tests
- Particle size distributions
Sludge Settling Velocity Tests

- **Goal:**
 - Establish settling velocity at the time of field tests
- **Sensitive to:**
 - Column shape (Dick 1975)
 - Mixing intensity
 - Temperature

Settling velocity models used in clarifier modeling

\[V_s = V_o e^{-CK} \]

Settling Velocity Data Fits

\[V_s = V_o e^{-CK} \]

Takacs versus Flocculation Submodel

\[V_s = V_o \left\{ e^{-K_1(C-C_{\text{min}})} - e^{-K_2(C-C_{\text{min}})} \right\} \]

- **Takacs Equations:**
 - Calibration of K2
 - K2 is geometry specific
 - Cannot predict effect on ESS of changes in geometry
 - Does not explicitly include discrete settling
 - Less physically based
 - Simpler formulation and shorter computation time

- **Flocculation Model:**
 - Measured KA & KB
 - Measured particle fractionation
 - Can predict effect on ESS of changes in geometry
 - Includes discrete settling
 - More physically based
 - More complex formulation and longer computation time
Thickening/Compression

• Two phase phenomenon
• Similar to soil consolidation
• Weight of overburden results in a piezometric gradient that causes liquid phase to migrate.
• As the solids consolidate, the water being displaced impedes the solids movement. Kinnear used the Karman-Kozeny equation to describe this; the problem is the number of calibration parameters needed to use this approach.

Settling Velocity Models Based on a Two-Phase Approach

\[V_s = k \frac{(1 - n_1 X)^4}{X} e^{-n_2 X} \]

Cho et al. (1993)

\[V_s = k \frac{e^{-nX}}{X} \]

Cho et al. (1993) – Simplified Model

These models predict zone and compression settling but fail drastically in the discrete zone.

Sludge Compression Model

\[
V_s = \frac{(1 - E)(\rho_l - \rho_f) g + P_o \left[\frac{(1 - E)}{(1 - E_g)} \right]^m \frac{\partial E}{\partial z}}{55S_0^2(1 - E)^2 \mu} E^3
\]

\(\rho_l \) and \(\rho_f \) are the liquid and floc densities, \(E \) is the porosity, \(E_g \) is the porosity at the gel point
\(S_0 = 6/dp \) is the specific surface area,
\(dp \) is the particle diameter,
\(\mu \) is the fluid dynamic viscosity,
\(P_o \) is an empirical coefficient,
\(\phi \) and \(\phi_g \) are the solids and gel solid fraction respectively.

Settling Velocity Research (McCorquodale et al. 2004)
Six Months of Settling Velocities

![Graph showing settling velocities](image)

Zone settling and compression rate

![Graph showing settling and compression rates](image)

2Dc settling velocity sub-model – Discrete settling

- Three types of flocs:
 - Big Flocs ($V_s \geq 6 \text{ m/h}$)
 - Medium Flocs ($1.5 \text{ m/h} \leq V_s < 6 \text{ m/h}$)
 - Small Flocs ($V_s < 1.5 \text{ m/h}$)

 - Threshold for hindered settling: 1000 to 1400 mg/L
 - Threshold for discrete settling: 500 to 650 mg/L
 - Non-settleable particles: Flocculated Suspended Solids (FSS)

<table>
<thead>
<tr>
<th>Settling Region</th>
<th>Settling Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X \leq \text{FSS}^*$</td>
<td>Non-settleable</td>
</tr>
<tr>
<td>$\text{FSS}^* < X \leq \text{Discrete Threshold}$</td>
<td>Discrete settling</td>
</tr>
<tr>
<td>$\text{Discrete Threshold} < X \leq \text{Hindered Threshold}$</td>
<td>Flocculent settling</td>
</tr>
<tr>
<td>$\text{Hindered Threshold} < X \leq \text{Compression Threshold}$</td>
<td>Hindered settling</td>
</tr>
<tr>
<td>$X > \text{Compression Threshold}$</td>
<td>Compression settling</td>
</tr>
</tbody>
</table>
The flocculation sub-model includes:

- Aggregation of primary-dispersed particles due to shear induced flocculation including flock breakup model
- Aggregation of primary-dispersed particles due to differential settling flocculation
- Implicitly models the filtration of particles in the sludge blanket

Shear induced flocculation (Parker et al., 1970)

\[
\frac{dn}{dt} = K_B \cdot X \cdot G^n - K_A \cdot X \cdot n \cdot G
\]

Where:
- \(X \) is the MLSS concentration (g/L),
- \(G \) the root-mean-square velocity gradient (s\(^{-1}\)),
- \(K_A \) a floc aggregation coefficient (L/g),
- \(K_B \) a floc breakup rate coefficient (s\(^{-1}\)),
- \(m \) the floc breakup rate exponent (dimensionless), and
- \(n \) is the primary particle number concentration (g/L).

Calibration consists in determining \(K_A \) and \(K_B \)

Differential settling flocculation

\[
\frac{dC_i}{dt} = -\frac{3}{2} k_{di} \frac{C_i C_2}{\rho_i \rho_2} \left(1 + 2 \frac{d_i}{d_2} \right) \frac{C_1}{d_2} (V_{s2} - V_{s1})
\]

Subscript \(i \) is for unflocculated–primary particles and subscript \(2 \) is for flocculated–flocs particles
- \(C \) is concentration
- \(d \) is cross sectional diameter
- \(\rho \) is density
- \(K_{di} \) is a kinetic constant between 1 & 2
- \(V_s \) is the settling velocities

UNO 2Dc Clarifier Model: Calibration and Validation of the Model
Model calibration

• Adapting the model to reproduce field or experimental data:
 – Identify the geometry and operational parameters to be evaluated
 – Measure the settling properties of the sludge:
 • Discrete
 • Zone
 • Compression settling
 – Measure the flocculation kinetic constants
 – Adjust fractionation and/or compressibility
 – Adjust the diffusion coefficients

Model calibration – Identify and input the clarifier geometry and operational parameters

Marrero WWTP
SOR = 1.0 m/h ~ 590 gpd/ft²
MLSS = 2800 mg/L, RAS SS = 8400 mg/L
RAS= 50%

Discrete settling

The settling velocities of large and medium flocs are found by direct measurement (visual inspection) in a column batch test using a light source, a scale and a stopwatch

Zone and compression settling

\[V_s = V_o e^{-k_1 X} \quad \text{Hindered Threshold (} X_h < X \leq \text{ Compression Threshold} \]

\[V_s = V_c e^{-k_c X} \quad X > \text{ Compression Threshold} \]
Determination of Settling Properties

\[V_s = V_0 e^{-kX} \]

Calibration of the flocculation sub-model

- Collect a MLSS sample (About 15.0 Liters)
- Use a six-paddle stirrer and fill each jar with 2.0 L of mixed liquor (avoiding unnecessary delays)
- Assign a flocculation time to each jar, e.g., 0, 2.5, 5, 10, 20, 30 minutes
- Mix the samples at a G of approximately 40 s\(^{-1}\)
- Allow the sample to settle for 30 minutes
- Take a supernatant sample from each jar
- Measure the TSS

Marrero WWTP SST

- MLSS = 2800 mg/L
- SOR = 1 m/h

Measured Settling Properties

Discrete Zone
- \(f_1 = 0.742, \ V_{s1} = 10.8 \text{ m/h} \)
- \(f_2 = 0.255, \ V_{s2} = 3.0 \text{ m/h} \)
- \(f_3 = 0.003, \ V_{s3} = 0.7 \text{ m/h} \)

Hindered and Compression Zone
- \(V_0 = 10.54 \text{ m/h}, \ K_1 = 0.40 \text{ L/g} \)
- \(V_c = 3.20 \text{ m/h}, \ K_c = 0.18 \text{ L/g} \)
- \(\text{FSS}^* = 4.3 \text{ mg/L} \)

Field Data
- Expon. (Field Data)

- \(X_{k_0} = 30 \times e^{-0.45 \text{X}} \)
- \(R^2 = 0.98 \)

Equation 2.39

\[C = a + (C_0 - a) e^{-kgtX} \]

\[n_t = \frac{K_A - G}{K_A} \times \left(1 - \frac{K_B - G}{K_A} \right) e^{-K_A X G t} \]

Wahlberg et al. (1994)

La Motta et al. (2003)
Particle Size Distributions

- McCorquodale et al. developed a semi-empirical simple method to estimate fractionation and discrete settling for 3 particle sizes.
- City College New York Modified the method.
- Accurate methods for measuring PSD include:
 - Image analysis
 - Laser reflection
 - Laser diffraction
 - Acoustic spectroscopy
- In Situ vs. Ex Situ Techniques

Output Validation Tests

- Solids profile testing
- Velocity profile testing
- Dye transport testing
 - RTD
 - Continuous dye snapshot
- Sludge blanket monitoring

Solids Profile Measurement

- Sampling Method
 - Larsen:
 - Kemmerer
 - Crosby:
 - Solids Distribution Test - Sample pumps
 - Esler:
 - Optical device
Solids Profile Visualization

Solids Profile Comparison to Simulation
Field Test (Crosby SD test) Simulation (2DC)

Velocity Profile Measurement
• Larsen built his own ultrasonic velocity probe
• Commercial probes: ADV
• Drogues
• Concerns:
 • Low velocities
 • Probe sensitivity
 • Difficult to hold still!

Velocity Profile Visualizations
Dye Tests: Residence Time Distribution Tests

Sludge Blanket Monitoring

- Dynamic monitoring of sludge blanket
- Sludge judge
- Difficulties: What is the threshold concentration of the “sludge blanket?”

Conclusions: Output validation tests

- Solids profiles
 - Relatively easy to measure
 - Directly comparable to model results
- Velocity profiles
 - More difficult to measure directly
- Dye tests
 - Useful for flow distribution issues
 - Continuous test not commonly used
- Dynamic blanket monitoring
 - Useful for rough monitoring of test conditions
 - Not as quantitative as solids profiles
Case Study Number 1: Comparison of Models

- One-dimensional (1D) Model (State Point)
- Two-dimensional (2D) Model (UNO CFD)
- Three-dimensional (3D) Model (Zhou CFD)

1D Model (Clariflux)

- Developed by Carollo Engineers
- Solves solids flux equations based on measured settling velocity coefficients (or SVI)
- Calculates state point for steady state operation
 - SOR Line
 - MLSS Line
 - RAS line

State Point Model

Clariflux Model Results

Test Condition (33% RAS)
Clariflux Model Results
Increased RAS

Suspended Solids Conc., mg/l

2D Model – UNO Model

- Developed by Griborio, McCorquodale, and associates at the University of New Orleans
- Two-dimensional model based on
 - Vorticity / stream function model
 - Turbulent hydraulics
 - Radial flow coordinates (axi-symmetric)
 - Discrete Settling
 - Hindered Settling
 - Compression
 - Flocculation

2D Model Results
Model Runs

- All tests run at 3,600 mg/L
- Settling coefficients as measured in the field
- Dynamic model runs
- 350 minutes simulation time (5.8 hours)
2D Model Results
Summary of Model Runs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Calibration Run</td>
<td>300</td>
<td>3,300</td>
<td>300</td>
<td>3.5</td>
<td>1,550</td>
<td>16.5</td>
<td>16.5</td>
</tr>
<tr>
<td>2</td>
<td>Slit Inlet and Standard Baffle</td>
<td>3.5</td>
<td>1,800</td>
<td>100</td>
<td>3.5</td>
<td>2,200</td>
<td>14.4</td>
<td>14.4</td>
</tr>
<tr>
<td>3</td>
<td>High Slit</td>
<td>5.5</td>
<td>1,800</td>
<td>100</td>
<td>3.5</td>
<td>2,200</td>
<td>14.4</td>
<td>14.4</td>
</tr>
<tr>
<td>4</td>
<td>Curved Baffle</td>
<td>3.5</td>
<td>1,800</td>
<td>100</td>
<td>3.5</td>
<td>2,200</td>
<td>14.4</td>
<td>14.4</td>
</tr>
<tr>
<td>5</td>
<td>Curved Baffle, High Slit</td>
<td>3.5</td>
<td>1,800</td>
<td>100</td>
<td>3.5</td>
<td>2,200</td>
<td>14.4</td>
<td>14.4</td>
</tr>
<tr>
<td>6</td>
<td>Small Curves Baffle</td>
<td>3.5</td>
<td>1,800</td>
<td>100</td>
<td>3.5</td>
<td>2,200</td>
<td>14.4</td>
<td>14.4</td>
</tr>
<tr>
<td>7</td>
<td>Small Curves Baffle, HM</td>
<td>3.5</td>
<td>1,800</td>
<td>100</td>
<td>3.5</td>
<td>2,200</td>
<td>14.4</td>
<td>14.4</td>
</tr>
</tbody>
</table>

3D Model (Zhou CFD)

- Developed by Siping Zhou and J. A. McCorquodale
- Three-dimensional solution based on
 - Control volume model
 - K-epsilon turbulence model
 - Generalized coordinates
 - Hindered settling
 - Density-coupled solids transport
 - No flocculation or compression modeling

Existing Inlet

- Four openings in vertical feed pipe
- No energy dissipating feed-well

Prototype of Improved Inlet
3D Model Results (SVI 110)

Existing

Optimized

3D Model Results (SVI 190)

Existing

Optimized

3D Model Results

Summary of Model Runs

<table>
<thead>
<tr>
<th>Clarifier Configuration</th>
<th>Operating Conditions</th>
<th>1D Model Results</th>
<th>2D Model Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flow Rate (mgd)</td>
<td>SVI</td>
<td>RAS</td>
</tr>
<tr>
<td>Existing clarifier</td>
<td>3.5</td>
<td>33.3</td>
<td>12,000</td>
</tr>
<tr>
<td>Inboard/End Launder</td>
<td>3.5</td>
<td>33.3</td>
<td>12,000</td>
</tr>
<tr>
<td>Inboard/End Launder</td>
<td>3.5</td>
<td>33.3</td>
<td>12,000</td>
</tr>
<tr>
<td>End Launder</td>
<td>3.5</td>
<td>33.3</td>
<td>12,000</td>
</tr>
</tbody>
</table>

Conclusions from Modeling

- 1D model
 - Confirmed clarification capacity at 3.5 mgd
 - Clarifiers can be RAS limited at 33%
- 2D models
 - Reasonable verification of field tests
 - Inboard effluent launders slightly better than end launders and Stamford baffle
- 3D Model
 - Increased RAS rate without optimized inlet caused clarification failure
 - Optimized inlet can result in significant improvement with higher RAS ratio
Case Study 2: Comparison of Tangential Versus Puzzled Inlet

Fluent UDF Model
- Commercial CFD with k-epsilon turbulence model
- User-defined functions (UDF) add settling velocity, flocculation, solids transport, and density coupling
- Two or three-dimensional
- Capable of very refined grids

Overall Solids Profile

Tangential Inlet

Puzzled Inlet

Model Center-well Velocity Profiles

Tangential Inlet

Puzzled Inlet
Fluent UDF Model
Inlet Velocities

Tangential Inlet Puzzled Inlet